

Measurements International Metrology is Our Science, Accuracy is Our Business

Ohm's Law, how hard can it Be??? R = E/I, E = IR, I = E/R??

Duane Brown Chief Metrologist Measurements International

Ohm's Law, How hard Can it Be??? Topics Covered

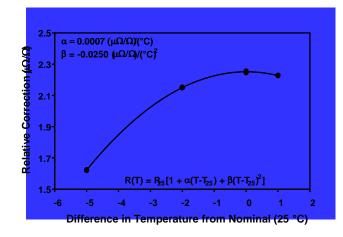
- 1. Resistance Metrology A Review of
 - 1. The Physical Effects Related to Resistance
 - Resistance is just V/I so what are the Physical Effects related to Voltage, Current and Resistance?
 - 2. Resistance Bridges
- 2. MIL Resistance Bridges
 - 1. A review of the CCC principle and the Measurements International 6010D DC Current Comparator up to 3000A (Current Ratio and traceability for resistance)
- 3. DC Current Measurements to 3000A
 - 1. Calibrating DC Current Transducers (Absolute Current and Traceability)
- 4. DC Voltage Measurements to 1200V
 - 1. Calibrating the calibrator (Voltage Ratio, Absolute voltage and traceability)
- 5. Summary and Conclusions
 - 1. The MI 17025 Scope

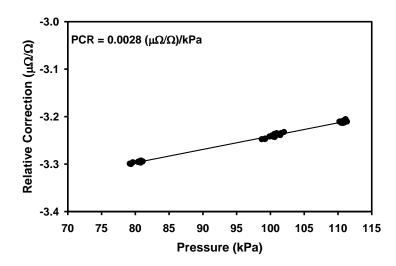
Physical Effects Related to Resistance – A Review

Resistance is just V/I so what are the Physical Effects related to Voltage, Current and Resistance?

- 1. Seebeck effect in a conducting loop with a temperature gradient different parts of a loop with dissimilar metals causes a thermoelectric voltage or thermal emf. This is the reason why you reverse the current through a resistor to cancel the net thermal emf.
- 2. **Peltier effect** the reverse of the **Seebeck** effect, a voltage across (or current through) dissimilar metals causes a temperature difference.

This is the reason why, especially on low value resistors, the resistor and its potential and current arms are made of the same resistive material and transitions to copper terminals are well separated from the resistor body.




3. **Thompson effect** – current flowing in a conductor with a temperature gradient will evolve or absorb heat depending on the material, temperature difference and current direction. This is why some resistors are designed to be thermally symmetric and with a large thermal mass to equally distribute any heat flow.

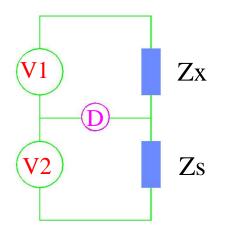
The **Seebeck**, **Peltier** and **Thompson** effect are also magnetically sensitive. Current flow is usually designed to flow through twisted and shielded pairs of leads to minimize generating magnetic fields and operation in magnetic fields is cautioned.

- 4. Temperature Coefficient (TC) the change in resistance due to a change in temperature. Typically analyzed as a second order polynomial relationship $\Delta R/R = \alpha \Delta T + \beta \Delta T$. In resistance measurements the Temperature Coefficient Uncertainty = TC_{RESISTOR}/Bath Stability
- 5. Pressure Coefficient the change in resistance due to a change in pressure. Typically analyzed as a linear relationship $\Delta R/R = \rho \Delta P$. For example L&N Thomas type 1 ohm resistors typically have ρ =+0.003 ppm/kPa

- 6. Dielectric Absorption the change in resistance due to time delays in the redistribution of charge inside insulating parts of the resistor or its case. This is why some resistors have a variation of resistance with respect to rapid current reversal rates. Dielectric absorption can be seen in resistors as low as $1k\Omega$ resistors and higher caused by aging and/or the breakdown of the element.
- 7. **Voltage Coefficient** the change in resistance due the change in measuring voltage (but not due to the power being dissipated).

This is generally associated with higher value resistors and is related to dielectric absorption and higher order interactions of other thermoelectric and physical effects.

- 8. **Power Coefficient** the change in resistance due to change in power dissipated in the resistor that is not accounted for by the temperature coefficient. This effect is most evident in low value resistors and is critically dependent on how heat is flowing from the resistor to the environment. It is further complicated by interaction of thermoelectric effects and non-uniform physical effects, such as different temperature coefficients along the resistive element interacting with current flow direction and the Thompson effect.
 - For example the power coefficient specification on an SR104 is $\,<\,$ 1ppm/W.


9. **Strain** - the change in resistance due to mechanical dimensional changes in the resistive element. Mechanical dimensional changes can be caused by vibration, impact or even orientation of the resistor.

10. **Hysteresis** – the non-reversible change in resistance caused by reversible change in an influence parameter. This is a difficult effect to clearly identify. An example of a hysteric mechanism is the non-repeatable slipping along two different materials during expansion/contraction of the resistive element against its support structure.

11. Bridge Review

Zx/Zs = V1/V2

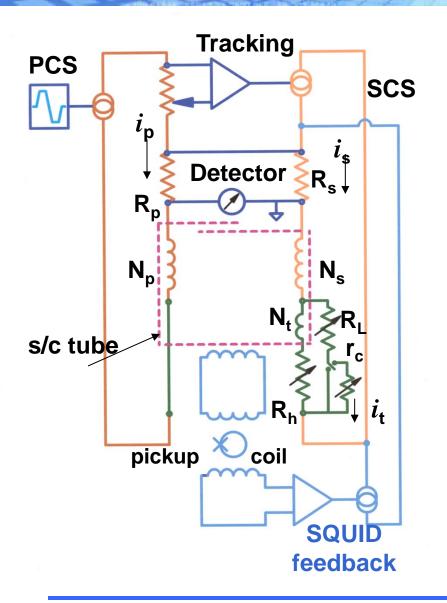
Usually, we use a bridge to scale from a known impedance to an unknown impedance.

Bridges convert the accurate measurement of the voltage (or the current) to the ratio of two voltages, two currents or two impedances.

The bridge method has the advantagess:

- A null detector (D), as opposed to a calibrated linear detector
- Low source output impedance thus lower noise...

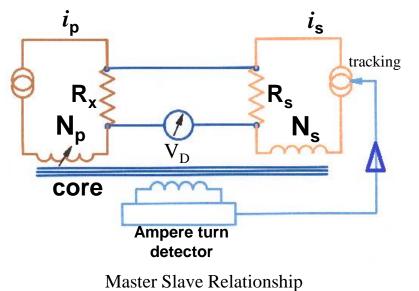
1. The cryogenic current comparator Resistance Bridge


The cryogenic current comparator (CCC) resistance bridge is the most complicated of systems to be discussed especially since it operates on a principle that is not commonly understood. Yet it shares many of the design features with the dc current comparator resistance bridge:

Real Turns, Partial Turns and Ramping Current Sources.

First one needs to understand how a transformer can be made that operates at dc, has almost perfect ratio accuracy and zero leakage effects.

Measurements International Metrology is Our Science, Accuracy is Our Business

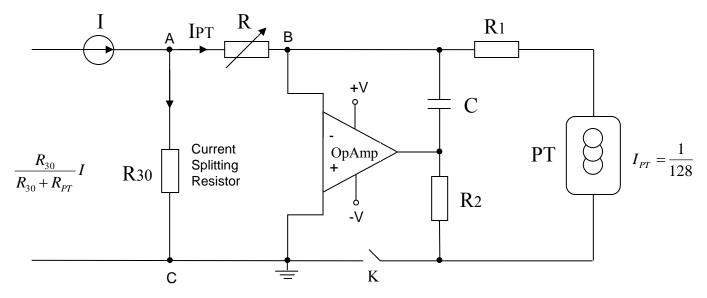


Cryogenic Current Comparator Bridge Ampere Turn Device & at balance $i_p \times N_p = (i_s \times N_s) + (i_t \times N_t)$ $R_p \times i_p = R_s \times (i_s + i_t)$

(current x turns) imbalance produces current in s/c tube; sensed by pickup coil and SQUID; drives feedback to remove imbalance.

• The tracking circuit and N_P are used to create and ampere turns balance in the comparator

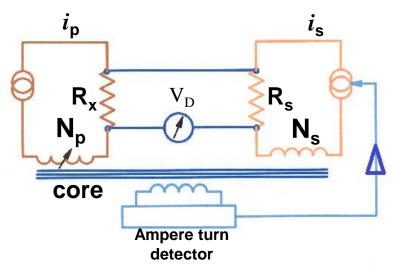
- N_p is then varied to zero the difference in voltage drops across resistors (voltage detector VD)
- And hence $i_PR_X = i_SR_S = R_x/R_s = N_P/N_S$
- Excellent linearity < 0.005 ppm
- 0.001 $\Omega \rightarrow$ 100 kΩ (Typical Range)
- Various Range Extenders extend the range and improve the accuracy down to 1 $\mu\Omega$ at higher Currents
- The 6010D is a current ratio device Ix:Is. As a result there is no need for current accuracy because of the master slave relationship and automatic ampere-turn balance.



 $\begin{aligned} \text{Ratio} &= N_x/N_s = R_x/R_s = I_S/I_X \\ \text{Where } N_s &= \text{fixed winding, } N_P = \text{Variable turns} \\ N_p &= N_{\text{real-turns}} + N_{\text{partial-turns}} \end{aligned}$

For a 10:1 ratio $N_{real} = Ns x ratio$ $N_{partial-turns}$ binary weight = 1/128 1 Real_{turn} - 128 partial_{turns} $V_D = ((Ratio * N_s) - N_{real}) * 128 = 1 ppm$

The ratio of power dissipation in the compared resistors is the inverse of the ratio of resistance (the largest power is dissipated in the smaller resistor) < 10 mW



1) Winding resistance of the turns and the relay contact resistance from the current splitting resistor

2) The wire gauge of the Partial turns was increased to improve the TC of the wire and to decrease the resistance in the partial turns.

- The ampere turn flux detector is a flux to voltage converter which works at dc by driving the core into saturation using ac pulse and determining the dc ampere turns imbalance as the core comes out of saturation.
- The LSB ampere turn sensitivity of the flux detector is equivalent to 0.01 ppm

Using the Flux Detector the DC Current Comparator can be calibrated as follows: Real Turn Comparison:

	inpui ison.	
T 1 Error:	-0.0019	+/- 0.00130 ppm
T 2 Error:	0.0013	+/- 0.00105 ppm
T 4 Error:	-0.0018	+/- 0.00181 ppm
T 8 Error:	0.0004	+/- 0.00124 ppm
T 16 Error:	0.0042	+/- 0.00170 ppm
T 32 Error:	-0.0001	+/- 0.00108 ppm
T 64 Error:	0.0036	+/- 0.00119 ppm
T 128 Error:	0.0015	+/- 0.00130 ppm
T 256 Error:	-0.0018	+/- 0.00157 ppm
T 512 Error:	0.0019	+/- 0.00105 ppm
T 1024 Error:	-0.0005	+/- 0.00216 ppm
T 2048 Error:	0.0025	+/- 0.00102 ppm
T 1024 Error:	0.0048	+/- 0.00160 ppm
T 2048 Error:	0	+/- 0.00112 ppm

Partial Turn Comparison:

*		
PT 1/128 Error:	0.0060	+/- 0.00130 ppm
PT 2/128 Error:	0.0004	+/- 0.00125 ppm
PT 4/128 Error:	0.0047	+/- 0.00128 ppm
PT 8/128 Error:	-0.0004	+/- 0.00128 ppm
PT 16/128 Error:	-0.0024	+/- 0.00164 ppm
PT 32/128 Error:	-0.0006	+/- 0.00146 ppm
PT 64/128 Error:	0.0007	+/- 0.00102 ppm

Normally performed once a year No standards are required Sensitivity 1uAT = 1 mV = 0.01 ppm

Verification - Intercomparison with a CCC (METAS) over 3 years

Ratio	2010 Ratio Error (10 ⁻⁹)	2013 Ratio Error (10 ⁻⁹)	Diff 10 ⁻⁹
10:1	18	9	-9
100:10	23	15	-8
1k:100	21	20	-1
10K:1K	17	16	-1
13K:1k	17	9	-8

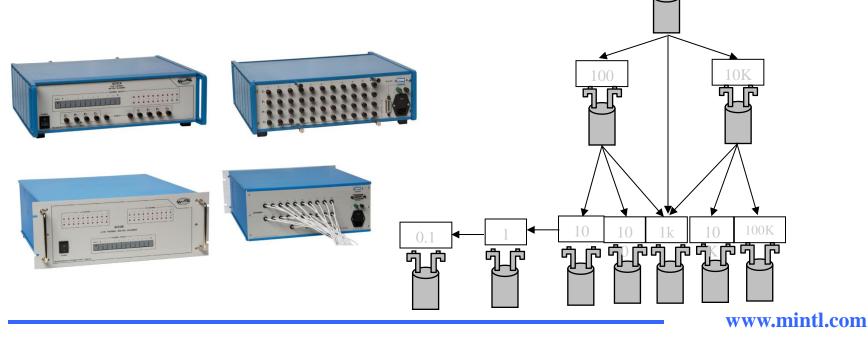
To maintain a ratio accuracy of 0.04 ppm requires that the difference is < 0.03 ppm

Traceability

Prior to 1990 traceability was defined as Traceable to an NMI

Since 1990 the Quantum Hall is the International Representation of the SI Ohm

Traceable through an NMI to the SI Unit In the 6010D traceability is provided through the standard resistor (R_S)



Measurements International Metrology is Our Science, Accuracy is Our Business

Resistance Metrology

Automation using Matrix Scanners

10 and 20 inputs Four Terminal Automates the measurements Build up (1Ω to 10Ω to 100Ω and $10k\Omega$ to $100k\Omega$) and Build Down ($10k\Omega$ to $1k\Omega$)

Range Extenders and Accessories to 1050A

The 6010D bridge is extensively used in NMIs and industry for resistor maintenance and to calibrate customers resistors in the range of 1Ω to $100k\Omega$

NMIs: NRCC, NIST, CENAM, METAS, PTB, CMI, Singapore, NIMT, NMIJ, New Zealand, NMIA NIM, INMETRO, INTI, INTA, All the major NMI's worldwide.

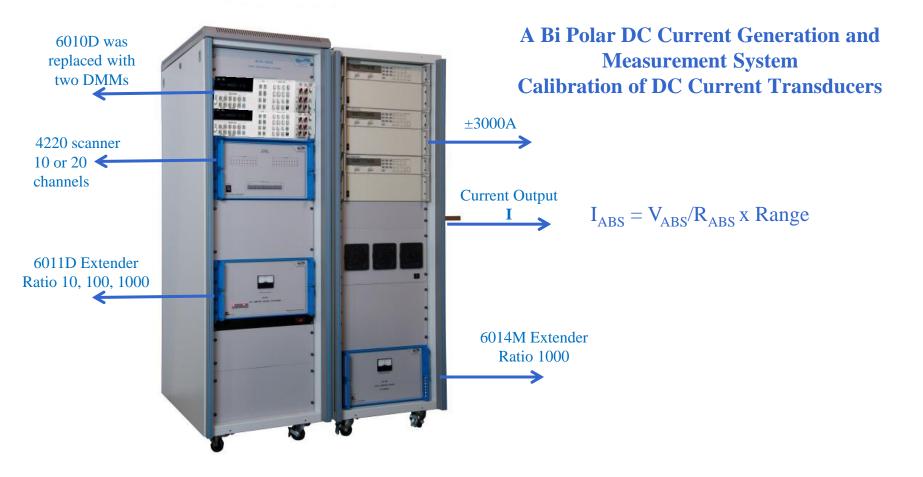
Government Labs: DOE (USA) NASA, Lockheed, JEMIC, ALPHA,

R=E/I

6010D/3000A System Calibration of Resistors and Shunts

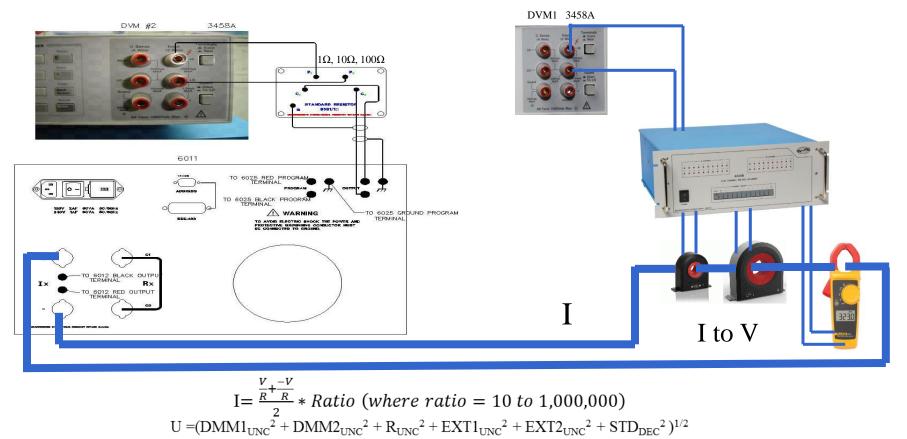
6010D/3000A System

DC Current Range Extenders Ratio and Uncertainties **Resistance** Ratio Uncertainty Ratio 1Ω to 0.1Ω 0.2 ppm 10 10Ω to 0.1Ω 0.2 ppm 100 10 Ω to 0.01 Ω 0.2 ppm 1,000 10 Ω to 0.001 Ω 0.3 ppm 10,000 100,000 10Ω to 0.0001Ω 2 ppm


10 ppm

100 Ω to 0.0001 Ω

1,000,000

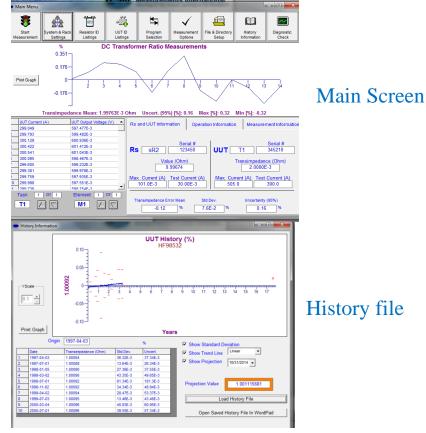


$\mathbf{I} = \mathbf{E}/\mathbf{R}$

DC Current Calibration for 100A, 300A, 400A, 1000A and 3000A Systems.

www.mintl.com

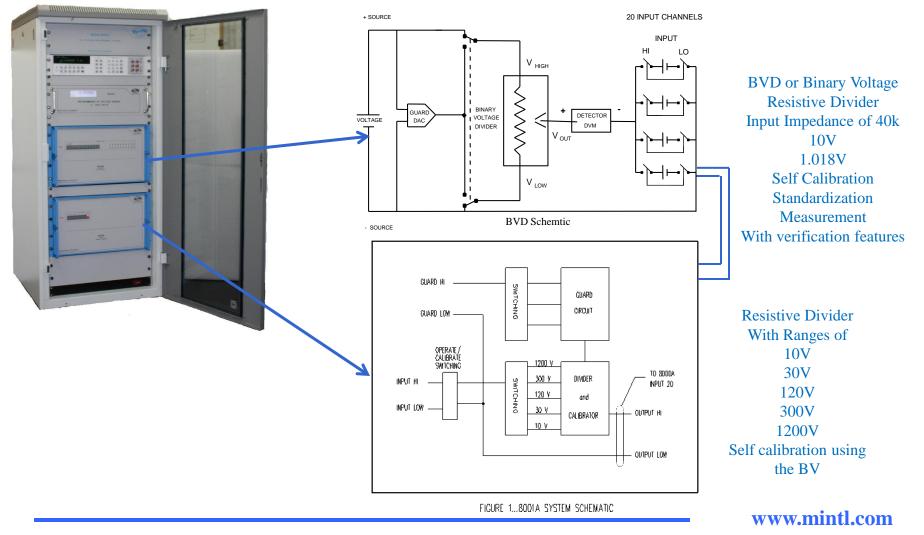
Measurements International Metrology is Our Science, Accuracy is Our Business


Operating Software

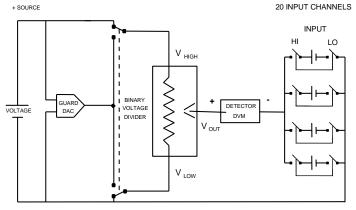
ettings File	Load File	Save File	GPIB Mo	Demo	- F
xtenders & Power St	upplies Voltmeters				
Range Extend	der	P	ower Supply		
 € 6011D/100 € 6011D/300 € 6011C 	Expanded Unc. (95%) Unc. Degrees of Freed		C HP 6632A	 ← 6100A ● HP 6680 	× 3 •
	Serial Number GPIB Address	12345010	Serial Number GPIB Address	6789021 5 • 6 •	1000A • 7 •
	Test Current Adjus	tment Window	10	96	
	Power Supply Sett	ing Protection Win	dow 5	96	
6012M / 6013M	M / 6014M		Reversi	ng Switch	
I In System	Expanded Unc. (95	i%) 1 pp	m 60	23 Sei	rial Number
C 6012M	Unc. Degrees of Fr	eedom Infinite 👻	60	25 676	390
 ○ 6013M ○ 6014M 	Serial Number	12346	60	27	

1.000

System Setup files and UUT Files



www.mintl.com

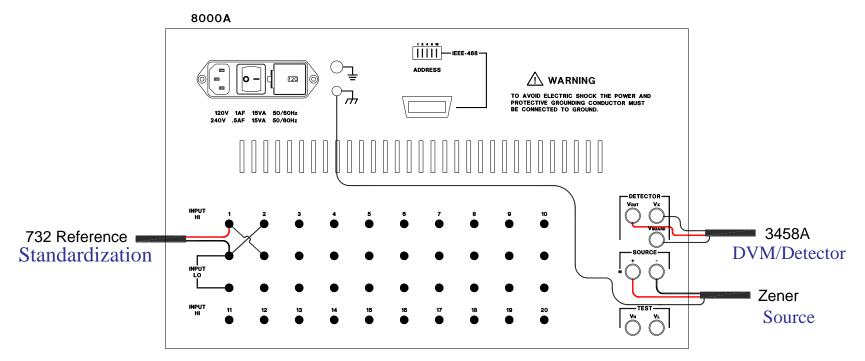

Measurements International Metrology is Our Science, Accuracy is Our Business

DC Voltage Calibration System

An Accurate Self Calibrating Binary Voltage Resistive Divider System

13 Bit Binary Voltage Divider 10V/2¹³ = 1.2 mV DMM only sees voltages below 1.2mV

- SOURCE


System consists of the BVD, A 3458A Detector, a stable 10V Voltage Source Voltage and a stable 10V Zener Reference

The sources of error have been critically examined, carefully controlled and accounted for. The system features various methods to verify the ratios from 1mV to 1200V with traceability to the 10V Zener Reference. This makes the system ideal for calibrating both DC References and DC

Voltage Calibrators.

BVD Connection Diagram

Source, DVM/Detector & Reference Reference: Known 10V (JJ) Source: Stable 10V Zener

System Configuration

Source & Reference

8000 GPIB Mode Display Done Switching capability required Serial Number \$0000000 Settings File Commands Settings File sample1 Load File Save File Source Source Standard Reference DVM & Extender Calibrators & DVM Under Te: Model Number Fluke 732A Model Number Fluke 732A	DVM/Detector & Extender © 8000A System & Rack Settings Commands Source switching capability Serial Number 80008000 Boole Settings File	
Serial Number 732-111 Output Voltage 10.000178 Uncertainty 0.2 Deg. of Freedom 50 Distribution T (ctudent's) Variance = (Unertainty)*2 Calibration / Standardization on Positive Polarity Only Negative Polarity 8000 Channel Channel 2	required. GPIB Address 2 → sample Load File Save File Source & Reference DVM & Extender Calibrators & DVM Under 1 + 1 DVM	Calibrator & DVM (UUUT) 8000A Serial Number Source switching capability required. GPIB Address DVM & Extender Calibrators & DVM Under Test Calibrator DVM Under Test
	Setup Function NPLC 50LFRED LINE	Constant of the britter Constant of the britter

Measurement Process

- 1. Calibrate the 13 bits of the BVD
- System Standardization remove the DC thermals and offsets in the BVD and Detector to make it direct reading.
- 3. Verification re-measure the source that you just standardized against.

BVD Stage Calibration ± 10V

 8000A Calibration Save Results 			Calibrate	8000A				
Files' Name te	-		Calibrate	8001A			Sta	rt Calibration
	File Extensions: *.cal, *.std, *.cle 8000A Calibration		So	Source Standardization			80001A Ca	libration
8000A S	/ N	80008000				Temp	perature	°C
Source V	'oltag	e 10.00013920	0 Start Da	ate 2014	06-13	Pres	sure	kPa
Cal. Pers	onne	A. W.	Start Ti	me 13:3	2:41	Humi	dity	%RH
		Positive	e Source Polarity			Nega	tive Source Polari	ty
		Factor (x 10^6)	Sqrt(Var.)(x 10^6)	Change (x 10^6)	F	actor (x 10^6)	Sqrt(Var.)(x 10^6)	Change (x 10^6)
	1	0.005	0.012	0.000	1	-0.003	0.012	0.000
	2	-0.003	0.011	0.000	2	0.004	0.010	0.000
	3	-0.011	0.013	0.000	3	-0.018	0.014	0.000
Display	4	0.012	0.012	0.000	4	0.013	0.012	0.000
Correction	5	-0.016	0.013	0.000	5	-0.022	0.011	0.000
Factors	6	0.001	0.013	0.000	6	0.000	0.011	0.000
	7	-0.097	0.010	0.000	7	-0.089	0.011	0.000
	8	-0.039	0.012	0.000	8	-0.036	0.011	0.000
	9	-0.091	0.010	0.000	9	-0.091	0.013	0.000
	10	-0.323	0.012	0.000	10	-0.335	0.012	0.000
	11	1.150	0.011	0.000	11	1.156	0.012	0.000
	12	-1.699	0.014	0.000	12	-1.696	0.011	0.000
	13	1.110	0.011	0.000	13	1.115	0.011	0.000
	,				,			
8000A Te	est M	enu	Oper	n Saved Calibratio	n File	In WordPad]	Done

BVD has a reversing switch built in for reversing the source Self Calibration removes the long term drift of the system

BVD Standardization

8000A Calibration And IE	EE Operations							
✓ Save Results Files' Name test_5mar File Extensions: *.cal, *.std, *.cle		Stand	ate 8000A lardize Sourc ate 8001A	e			Start Calibra	ation
8000A Calib		Source Standardization 8000			001A Calibratio	n		
Source S / N Source Voltage Cal. Personnel	732-111 10.000140300 A. W.	Start	Voltage t Date t Time	10 2014-06-1 13:45:01		Temperature Pressure Humidity		°C kPa %RH
Display Standardization Information	Vgnd (uV) 1 3.733 2 3.724 3 3.724 4 3.733 6 3.724 7 3.724 1 0.0012 1 10.00012 3 10.00012	3 9 5 0 2 5 1 5 1 5 1 5 1 5 5 1 5 5 1 5 5 1 5	Sqrt(Var.)(uV) 0.004 0.005 0.003 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.0265 0.265 0.274		1 2 3 4 5 6 7	Vgnd (uV) -3.911 -3.904 -3.902 -3.899 -3.906 -3.897 -3.900 Voltage (V) -10.000128781 -10.000128867 -10.000129110	Sqrt(Var.)(uV) 0.006 0.006 0.004 0.004 0.004 0.004 0.004 0.004 Sqrt(Var.)(uV) 0.399 0.399 0.399	
Mean Vgnd: (3.728 +- 0.001) uV, N = 109, p = 95.45% (-3.903 +- 0.002) uV, N = 93, p = 95.45% Standardized Voltage: 10.000016090 V +- 0.205 ppm, N = 50, p = 95.45% -10.000015780 V +- 0.205 ppm, N = 50, p = 95.45%								
8000A Test Mer	าน	0	pen Saved C	Calibration Fi	le In	WordPad		Done

The BVD is a ratio device, it measures the ratio of two voltages. Standardization makes the 8000 direct reading in terms of Absolute

Standardization Verification Process

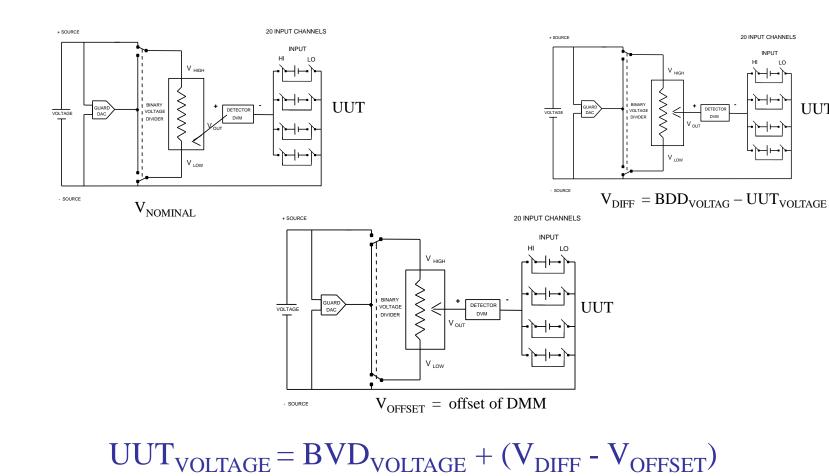
Reference Voltage = 10.0000122 UNC = 0.02 ppm 732B calibrated using Josephson Array Connected to Channel 1 and 2

Measure Channel 1 Voltage Measurement = 10.00001220 ± 0.01 ppm

Standard Reference							
🔽 Different Chan	nel For Negative Polarity						
Model Number	Fluke 732A						
Serial Number	732-222						
Output Voltage	10.000122						
Uncertainty	0.2 ppm						
Deg. of Freedom	50 8000 Channel Channel 1 💌						
Distribution	T (student's)						
Calibration / S	tandardization on Positive Polarity Only						
Negative Pol	arity 8000 Channel Channel 2 💌						

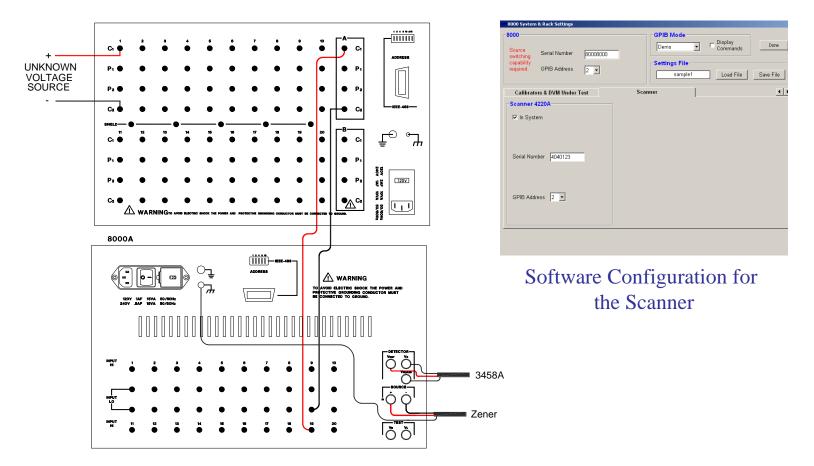
Alternatively you could measure two calibrated 732's and record the difference in the value as the error. The 732's would require calibration on the JJ

Ref 1 - Ref 2 < uncertainty of the two references



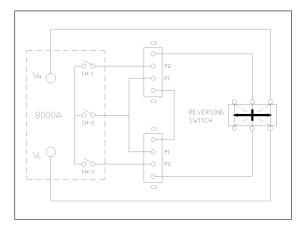
20 INPUT CHANNELS

INPLIT


UUT

Voltage Measurement

Channel Extension


Connecting a 20 Channel Scanner

www.mintl.com

8000 Verification Box

RATIO VERIFICATION: Where external resistors are used to verify the ratios of the 8000. If you don't have a JJ

Measurements International Metrology is Our Science, Accuracy is Our Business

Included in the box is a pair of standard Resistors. Good Short Term Stability eg: for 1:1 ratio, two 10 K standard resistors. eg: for 10:1 ratio, 1 K and 10 K standard resistors. A low thermal reversing switch (R).

Either one of these two techniques can verify the BVD Ratio to < 0.02 ppm Built into the software where input channels are specified

8001B 1200V Divider

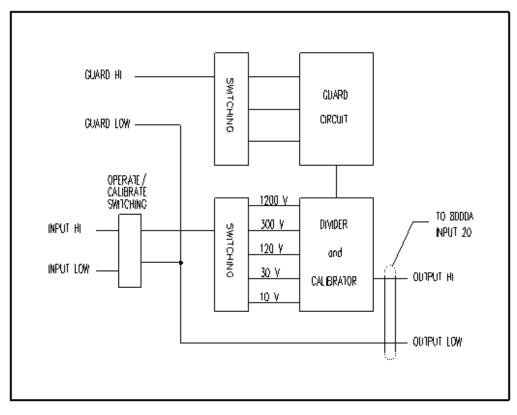
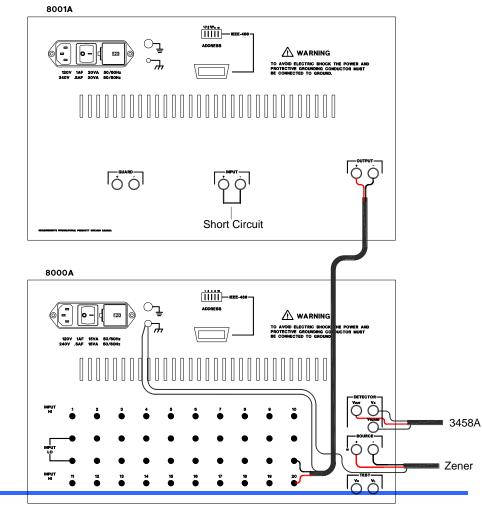



FIGURE 1 ... 8001 A SYSTEM SCHEMATIC

The Ext is also a resistive divider and maintains excellent short term drift and is self calibrating using the BVD after standardization is complete. Application for the BVD & Ext include the calibration and verification of the linearity and absolute voltage measurements of both calibrators and DMM's up to 1200V.

BVD/EXT Connection Drawing

www.mintl.com

EXT Setup & Calibration

8000 System & Rack Settings	
Source Serial Number 80008000 activity required GPIB Address 2	GPIB Mode Display Demo Commands Settings File sample Load File
Source & Reference DVM &	Extender Calibrators & DVM Under Te
DVM General Number 34586543 General Keithley 2000 GPIB Address 16 • General Conter Microvolt Range R0	Serial Number
Microvolt Range R 0 Auto Range R AUTO Termination Character Reading Trigger	
Reading Rate Setup Function NPLC 50;LFREQ LINE	

Ext Software Configuration

Extender Calibration using the calibrated BVD

8000 Calibration And IEE	E Operations					
I Save Results Files' Name SAMPLE114 File Extensions: *.cal, *.s		Calibrate 80	Source	• R	Calibration anges put Channel	Connect Reference Standard to 8001 INPUT Start Calibration
8000 Calibration Sour	rce Standare	dization 8001 Ca	alibration 8001 Verif	ication		
8001 S / N Source Voltage	PLANT	Start D	' ate 2014-10-27		Temperature	℃
Ű.	10.0001700					
Cal. Personnel		Start T	ime 11:01:08		Humidity	%RH
		Offset (uV)	Sqrt(Var.)(uV)		Voltage (V)	Sqrt(Var.) (ppm)
	Input	0.06	0.03	10 V	10.000007643	0.10
	10 V	0.24	0.01	30 V	3.333480057	0.10
	30 V	0.20	0.03	120 V	0.833383153	0.13
Display	120 V	0.17	0.05	300 V	4.000010092	0.11
Correction	300 ∨	0.16	0.03	1200 V	0.999999134	0.34
Factors	1200 V	-0.01	0.04	1		
	1200/1200	0.16	0.02		Ratio	Sqrt(Var.) (ppm)
	300/120	0.15	0.17	30:10	2.999870358	0.021522800
	1200/120	1.76	0.22	120:10	11,999294000	0.099445162
				300:10	29.998182637	0.118603119
	Output Chan	nel Correction:		1200:10	119.993343559	0.408247878
				,		
	(0.17 +- 0	0.04) uV, N=16, p=95.	45%			
8000 Test Men	u	Ope	n Saved Calibration File	e In WordF	2ad	Done

Measurements International Metrology is Our Science, Accuracy is Our Business

EXT Verification

👐 8000 Calibration And IEE	E Operations					
Save Results Files' Name SAMPLE114 File Extensions: *.cal, *.s	41024	Calibrate 8000 Standardize Sc Calibrate 8001	ource IZ Verify 800)1		Start Calibration
8000 Calibration Sou	rce Standardizat	tion 8001 Calil	oration 8001 V	erification		
8001 S / N Source Voltage Cal. Personnel	PLANT 10.000007970	Start Date Start Time		0-28 Pr	mperature essure midity	°C kPa %RH
Display Venfication Errors	Input (V) 10 V 10 V 30 V 120 V 120 V 120 V 120 V 100 V 300 V 300 V	8001 Range 10 V 30 V 30 V 120 V 120 V 300 V 300 V 1200 V 1200 V	Measured (Y) 10.0000676 10.00001025 30.0003458 30.0003419 120.00112581 120.0012581 299.998572 299.998556 999.993338	Uncert. (ppm) 0.20 0.21 0.29 0.29 0.31 0.31 0.89 0.89	Error (ppm) -0.12 0.23 XXX 1.20 XXX 0.68 XXX -2.38 XXX	
8000 Test Men	IU	Open S	Saved Calibration	File In WordPad		Done

Input (V)	8001 Range	Mesured (V)	Uncert (ppm)	Error (ppm)	Input
10V	10V	10.00000676	0.2	-0.12	10V Reference
10V	30V	10.00000103	0.21	0.23	10V Reference
30V	30V	30.0003058	0.21	XXX	Calibrator 30V
30V	120V	30.0003419	0.29	1.2	Calibrator 30V
120V	120V	120.001177	0.29	XXX	Calibrator 120V
120V	300V	120.001259	0.31	0.68	Calibrator 120V
300V	300V	299.999572	0.31	XXX	Calibrator 300V
300V	1200V	299.99982	0.89	-0.83	Calibrator 300V
1000V	1200V	999.993938	0.89	XXX	Calibrator 1000V
					www.mintl

Summary: Resistance Metrology MIL 17025 Scope

Resistance Range

1 μΩ to 10 μΩ	500 to 20 ppm
10 μ Ω to 100 μ Ω	20 to 2 ppm
100 $\mu\Omega$ to 1 m Ω	2 to 0.9 ppm
1 m Ω to 10 m Ω	0.9 to 0.22 ppm
10 m Ω to 100 m Ω	0.22 to 0.17 ppm
100 m Ω to 1 Ω	0.17 to 0.16 ppm
1 Ω to 10 Ω	0.1 to 0.19 ppm
10 Ω to 100 Ω	0.19 to 0.22 ppm
100 Ω to 1k Ω	0.22 to 0.25 ppm
1kΩ to 10 kΩ	0.25 to 0.1 ppm
13 kΩ	0.2 ppm

10:1 Resistance Ratio		
0.1Ω to 1Ω	0.05 ppm	
1Ω to 10Ω	0.05 ppm	
10Ω to 100Ω	0.05 ppm	
100 Ω to 1k Ω	0.05 ppm	
$1 \text{ k}\Omega$ to $10 \text{ k}\Omega$	0.05 ppm	
$1 \text{ k}\Omega$ to $13 \text{ k}\Omega$	0.05 ppm	
$10 \text{ k}\Omega$ to $100 \text{ k}\Omega$	0.08 ppm	
100 k Ω to 1M Ω	0.1 ppm	
1 MΩ TO 10 MΩ	0.15 ppm	
$10 \text{ M}\Omega \text{ TO } 100 \text{ M}\Omega$	1.5 ppm	

1:1 Resistance Ratios	
1 Ω to 1 Ω	0.03 ppm
10 Ω to 10 Ω	0.03 ppm
100 Ω to 100 Ω	0.03 ppm
1 kΩ to 1 kΩ	0.03 ppm
10 kΩ to 10 kΩ	0.03 ppm
100 k Ω to 100 k Ω	0.10 ppm
1 ΜΩ ΤΟ 1 ΜΩ	0.12 ppm
10 ΜΩ ΤΟ 10 ΜΩ	0.15 ppm
100 ΜΩ ΤΟ 100ΜΩ	1.5 ppm

1000V 2 ppm

Full MI Scope NRCC Website

Summary

1) Ohms Law, how hard can it be???

Understanding the physical effects related to measuring a resistor to improve the measurement uncertainty. A resistor has a personality and it is only through experimentation and data collection that you can begin to understand it.

- 2) Importance of understanding and removing DC Offsets in all measurements to improve uncertainties
- 3) DC Voltage measurements

The importance of verifying the self calibration techniques for making accurate measurements to insure the best uncertainties when calibrating DC voltage calibrators that use (artifact calibration) and DMMS.

4) Why all this work?

Way to improve the Technologies for the improvement of measurement uncertainties worldwide for improving the quality of Life..

References and Related Documents and Websites

- R. Cutkowsky, "A New Switching Technique for Binary Resistive Dividers", IEEE I&
 M Trans, 1978
- 2. H. Tsao, "A 25-Bit Resistive Voltage Divider", IEEE I&<M Trans, 1987
- 3. Measurements from $10\mu\Omega$ to $1T\Omega$ with Traceability from the Quant Ω , 13:00-17:00 August 6, 2006 Nashville TN, Duane Brown & Barry Wood
- 4. A. F. Dunn "Measurement of Resistance Ratios in the Range to 100 Megohms" IEE Transactions on Instrumentation and Measurement, Vol 40. NO. 2 April 1991.